
Preconditioning for MCMC
Max Hird (UCL)
Joint work with Sam Livingstone (UCL)

AACIS Seminar 10/02/23 13:00



Outline

• Intro to Conditioning


• Intro to Markov Chain Monte Carlo (MCMC)


• Preconditioning in MCMC


• Condition Number


• Linear Preconditioning


• Nonlinear Preconditioning


• Summary


• References

Introductory Material

Our Contribution



Preconditioning

20th C Maths starts being concerned with computability and not simply conceivability:

`It is certainly true that a trivial modification improves the conditioning’

Turing [1948]

Turing coins the condition number and defines it in multiple ways:


• N-condition number:  where 


• M-condition number:  where 

∥A∥F∥A−1∥F ∥A∥F := Tr(A*A)

M(A)M(A−1) M(A) := max
ij

|mij |
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The condition number , and  is the best possible value≥ 1 1

e1

e2

well-conditioned

e2

0.01 × e1 + e2

⟺

ill-conditioned

Preconditioning: applying a transformation to reduce the condition number



Markov Chain Monte Carlo

Want to estimate Eπ( f(X))

Sample iid , form the estimator:X1, . . . , Xn ∼ π

fn :=
1
n

n

∑
i=1

f(Xi)

Bias is 0, Variance is  n−1Varπ( f(X))

Unnormalised  is no (theoretical) barrier π

Sampling is impossible for interesting π

Sample  from a -stationary Markov 
Chain, initial distn , form the estimator

X1, . . . , Xn π
μ0

̂fn :=
1
n

n

∑
i=1

f(Xi)

Markov Chain CLT gives us that

n ( ̂fn − Eπ( f )) d→ N (0,σ2
f )

where

σ2
f := Varπ( f(X)) + 2

∞

∑
i=1

Cov (f(X1), f(X1+k))
Ideal MCMC is quick to equilibrate and has 

low autocorrelation in equilibrium
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MCMC: algorithms
Generic structure of an MCMC algorithm: given an initial state  and 
a proposal density  with parameters 


1. Propose a new state 


2. Set  with probability , otherwise set 

X0 ∼ μ0
qθ(x → . ) θ ∈ Θ

Yi+1 ∼ qθ(Xi → . )

Xi+1 = Yi+1 α(Xi, Yi+1) Xi+1 = Xi

Step 2. is the Metropolis-Hastings accept/reject step - ensures -stationarityπ
Step 1. defines the algorithm:


•  : Independent Metropolis-Hastings


•  : Random Walk Metropolis


• : Metropolis Adjusted Langevin Algorithm


• the distribution of the position of a particle after T seconds, with initial 
position  and initial momentum , evolving according to Hamiltonian dynamics: 
HMC

qθ(x → . ) = pθ( . )

qθ(x → . ) = N(x,  σ2Id)

qθ(x → . ) = N (x + σ2 ∇xlog π,  2σ2Id)
qθ(x → . ) =

x p ∼ N(0, Id)
Metropolis et al. [1953]

Hastings [1970]
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MCMC: quantities of interest
Recall: Ideal MCMC is quick to equilibrate and has low autocorrelation in equilibrium (low 
autocorrelation  low asymptotic variance, modulo  )⟹ f

Time to equilibrium of a particular algorithm is measured by the -mixing time:ϵ

τ(ϵ, μ0) := inf {n : d (ℒ(Xn |X0 ∼ μ0), π) ≤ ϵ}
Asymptotic variance and time to equilibrium strongly depend on the spectral 
gap: defining the operator  of the Markov chain, which acts on P L2(π)

 where  is the first state in the Markov chain, started at .Pf(x) := E( f(Y)) Y x

 has an eigenvalue at 1 ( ) and P Pconst.=const. spectrum(P) ⊂ [−1,1]
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The spectral gap  is the distance between  and the nearest point in the spectrum  
(bigger is better)

ρ 1 λmax

σ2
f =

1 + λmax
ρ

Varπ( f )



Condition number in MCMC

Target in the form  on  such that  for all : 
 is -strongly convex and -smooth

π ∝ exp(−U(x)) ℝd mId ≤ ∇2
xU(x) ≤ MId x ∈ ℝd

U : ℝd → ℝ m M

The condition number associated with sampling from  is π

κ := sup
x∈ℝd

∥∇2
xU(x)∥2 sup

x∈ℝd
∥∇2

xU(x)−1∥2

If  is tight mId ≤ ∇2
xU(x) ≤ MId κ = M/m

As , the eigenvalues of  get squeezed together, and  starts to look 
more like an isotropic Gaussian

κ → 1 ∇2
xU(x) π

Introductory Material

-strong convexity:m
Unimodal

e.g. posterior with concave log-
likelihood, Gaussian prior

 measures the curvature of m U(x)

-smoothnessM
 is -Lipschitz∇xU(x) M

Discretisations work nicely

Convex quadratic upper and 
lower bound on U(x)



Importance of the condition number
Spectral Gap -Mixing Timeϵ
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Dwivedi et al. [2019]

Dwivedi et al. [2019]

Chen et al. [2019]

O(dκ2 log
1
ϵ

)

O(dκ log
1
ϵ

)

O(d 2
3κ log

1
ϵ

)

( ) Lee et al. [2021]ϵ = e−1O(
κd

log2 d
)

O(
log d

κ d
)

O(
log d

κd
)

(on a Gaussian) 
Lee et al. [2021]

Lee et al. [2021]

O(
log d

κ d
)

O(
1
κd

) Andrieu et al. [2022]

(on a Gaussian) 
Lee et al. [2021]
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All bounds up to logarithmic factors, mixing times in TV



Preconditioning in MCMC
Introductory Material

Preconditioning involves a process  in , a process  in , and a transformation {Xi} 𝒳 {Yi} 𝒴
g : 𝒳 → 𝒴

We sample  from a well-conditioned distribution and apply a Metropolis-
Hastings accept/reject to  such that  forms our samples to 
use in 

Y
X = g−1(Y) {Xi}

̂fn

Encapsulates much of adaptive MCMC and therefore generative models: learning a complex 
distribution is seen as equivalent to learning parameters  of a map  which we apply to 
samples from a simple distribution

θ g−1
θ

Generative Models: access to samples from 


• GANs, Goodfellow et al. [2014]


• Normalizing flows, Papamakarios [2021]

π
Adaptive MCMC: access to  (unnormalised)


• Sampling via measure transport, Marzouk 
et al. [2016]


• HMC with Inverse Autoregressive Flows, 
Hoffman et al. [2019] 

π



Linear Preconditioning
Our Contribution

When  for  the condition number of the distribution of  is Y = g(X) = LX L ∈ GLd(ℝ) Y

κL := sup
y∈Rd

∥∇2
yŨ(y)∥2 sup

y∈Rd
∥∇2

yŨ(y)−1∥2 = sup
x∈Rd

∥L−T ∇2
xU(x)L−1∥2 sup

x∈Rd
∥L∇2

xU(x)−1LT∥2

Intuition: set  to be the square root of some representative of  i.e. 
Precision,  for  the mode, hope that , doesn’t always work:

L ∇2
xU(x)

∇2
xU(x*) x* κL ≪ κ

Used in all major MCMC software packages (Stan, Tensorflow, Pyro etc.) even 
though theory is lacking.

Diagonal Preconditioning: L = diag(Σπ)− 1
2

Gaussian target:


 so ∇2
xU(x) = Σ−1

π κL = ∥diag(Σπ)1
2Σ−1

π diag(Σπ)1
2∥2∥diag(Σπ)− 1

2 Σπdiag(Σπ)− 1
2 ∥2 = ∥C−1

π ∥2∥Cπ∥2

There exist Gaussian targets for which  increases the condition numberL = diag(Σπ)− 1
2

Σπ =
4.07, − 3.90, 1.66

−3.90, 3.73, − 1.59
1.66, − 1.59, 0.72

⟹ κ = 23,000, κL = 31,000



Linear Preconditioning: Bounding κL
Our Contribution

Theorem 1: Assuming C1 and C2 we are able to make the following upper bound

κL ≤ (1 + ϵ) 1 + δ
d

∑
i=1

σ2
i

d

∑
i=1

σ−2
i

4

Bounds inform decisions at each stage of the process: pre-check, constructive, verification

SVD on : , ,  the right singular vectorsL L = UΣVT Σ = diag(σi : i ∈ [d]) {vi : ∥vi∥ = 1, i ∈ [d]}
 the eigenvalue/vector pairs of  {(λi(x), vi(x)) : ∥vi(x)∥ = 1, i ∈ [d]} ∇2

xU(x)

Condition 1 (C1): There exists an  s.t. for all  and ϵ > 0 i ∈ [d] x ∈ ℝd

(1 + ϵ)− 1
2 ≤

λi(x)
σ2

i
≤ (1 + ϵ)1

2

Condition 2 (C2): There exists a  s.t. for all  and  δ > 0 i, j ∈ [d] x ∈ ℝd

∥vi(x) − vi∥ ≤ 2δ and ∥vi(x) − vj∥ ≥ 2(1 − δ) for i ≠ j

There exist conditions C1’, C2’ which only involve  that imply C1 and C2λi(x), vi(x)



Nonlinear Preconditioning Our Contribution

Call  the condition number after general transform κg g : 𝒳 → 𝒴

Proposition: It is impossible to use linear preconditioning to achieve optimality 
( ) when  is not a Gaussian κg = 1 π

Proof Sketch: The only distribution with  is an isotropic Gaussian. Assume, 
seeking a contradiction, that we can linearly transform the state variable of a non-
Gaussian to reach a Gaussian. Then we could simply take the inverse of the 
transform to reach a non-Gaussian from a Gaussian, which is impossible due to 
closure of Gaussians under linear transformations

κ = 1

Change of variables:  so we need  

which is a particular form of the Monge-Ampère equation.

Ũ(g(x)) = U(x) + log | det J(g(x)) |
1
2

∥g(x)∥2 = U(x) + log | det J(g(x)) |

Proposition: There exist targets with arbitrarily high condition number that gets 
worse under any linear preconditioning whatsoever (excluding )L = Id



Nonlinear Preconditioning the Langevin Diffusion Our Contribution

dYt =
1
2

∇ylog π̃(Yt)dt + dBt

Defining  such that , Itô’s Lemma gives:f := g−1 X = f(Y)

dXt =
1
2

(J( f(Yt))∇ylog π̃(Yt) + L( f(Yt)))dt + J( f(Yt))dBt

where .Li( f(Yt)) = Δy fi(Yt)

Diffusion forms the basis of Riemannian Manifold MALA: 
parameter space as a manifold with Expected Fisher 
Information as metric

Rao [1945]
Girolami and Calderhead [2011]

Betancourt [2013]: Use G(Xt)−1 = ∇2
xU(Xt)−1

Xifara et al. [2014]
Livingstone and Girolami [2014]

dXt =
1
2

G(Xt)−1 ∇xlog π(Xt)dt + Γ(Xt)dt + G(Xt)− 1
2 dBt

where . This is exactly the diffusion on a manifold with 
contravariant metric .

G(Xt)−1 = J( f(Yt))J( f(Yt))T = (J(g(Xt))TJ(g(Xt))−1

G(Xt)−1

Γi(Xt) =
1
2

d

∑
j=1

∂
∂xj

(G(Xt)−1
ij )

Changing variables, calculus:



Nonlinear Preconditioning the Hamiltonian Our Contribution

Recall  so . Make the transformation .p ∼ N(0, Id) ν(p) ∝ (−
1
2

pT p) p → p̃ := f(p)

ν̃(p̃) ∝ ν( f −1(p̃)) | det J( f −1(p̃) |

= exp (−
1
2

f −1(p̃)T f −1(p̃)) | det J( f(p)) |−1

= exp (−
1
2

f −1(p̃)T f −1(p̃) − log | det J( f(p)) |)
In particular  has a Jacobian  sof(p) = G(x)p J( f(p)) = G(x)

ν̃(p̃) = exp (−
1
2

p̃TG(x)−1p̃ −
1
2

log | det G(x) |)
The joint distn targeted by HMC is 

π(x, p̃) ∝ π(x)ν̃(p̃ |x) = exp (−U(x) −
1
2

p̃TG(x)−1p̃ −
1
2

log | det G(x) |)
which has Hamiltonian

H(x, p̃) = U(x) +
1
2

p̃TG(x)−1p̃ +
1
2

log | det G(x) |
Girolami and Calderhead [2011]



Unification via Nonlinear Preconditioning Our Contribution

Recent algorithms inspired by `mirror descent’ technique use heuristic in the last slide: 
simulate process using the Langevin diffusion, and transport to samples using a `mirror 
map’: 

Hsieh and Cevher [2018]
Chewi et al. [2020]

Nemirovskii and Yudin [1979]

 is convex,  its convex conjugate, h : ℝd → ℝ h* ∇yh* = (∇xh)−1

Dynamics can be shown to be equivalent to Langevin on a Hessian Manifold i.e. a manifold with 
Hessian metric: G(Xt)−1 = ∇2

xh(Xt)−1

Chewi et al. [2020] propose using , matching the metric proposed in Betancourt [2013]: h = U
G(Xt)−1 = ∇2

xU(Xt)−1

Therefore use a transformation such that  (since recall: 
) 
J(g(X)) = ∇2

xU(X)1
2

G(Xt)−1 = J( f(Yt))J( f(Yt))T = (J(g(Xt))TJ(g(Xt))−1

Zhang et al. [2020]:

dYt =
1
2

∇xlog π(Xt)dt + ∇2
xh(Xt)

1
2dBt

Well-conditioned 
process:

Xt = ∇yh*(Yt) map:f (no MH accept/reject)



Hessian Based Transformation Our Contribution

 s.t.   makes sense:g J(g(X)) = ∇2
xU(X)1

2

∇2
yŨ(y) = J(g)−T ∇2

xU(x)J(g)−1 + J(g)−T ∇2
x log | det J(g) |J(g)−1 + R

= Id + ∇2
xU(x)− 1

2 ∇2
x log | det J(g) |∇2

xU(x)− 1
2 + R

 is a remainder involving derivatives of  and .R ∇2
xU(x)1

2 U(x)
Go from conditions on  being global in the case of linear preconditioning to local∇2

xU(x)
Make the guess: . Jacobian is  where 

 has th column 

g(X) = ∇2
xU(X)1

2 X − c(X) J(g) = ∇2
xU(X)1

2 + ∂ (∇2
xU(X)1

2, X) − J(c)

∂ (∇2
xU(X)1

2, X) ∈ ℝd×d j ( ∂
∂xj

∇2
xU(X)1

2) X

In d dimensions: need to solve ∂ (∇2
xU(X)1

2, X) = J(c)

Compromise: let g(X) = ∇2
xU(X)1

2 X

In 1 dimension:

c(X) =
∞

∑
k=2

(−1)kxk

k!
∂k−1

∂xk−1

∂2

∂x2
U(x)

= x
∂2

∂x2
U(x) − ∫

x

0

∂2

∂t2
U(t)dt



Summary
• Intro to Preconditioning


• Condition Number

• Intro to Markov Chain Monte Carlo (MCMC)


• Defined quantities of interest: spectral gap, -mixing time


• Recently introduced bounds on the quantities, polynomial in dimension and condition

• Preconditioning in MCMC


• Condition Number

• Linear Preconditioning


• Global conditions on the Hessian of the potential characterise the effectiveness

• Bound can be used: as a pre-check, constructively, or for verification


• Nonlinear Preconditioning

• Derive Riemannian manifold techniques as an instance of nonlinear preconditioning

• Identify Mirror Langevin techniques as the same

• Use these classes to identify nonlinear transformations

ϵ

Thanks! 🐒

Introductory Material

Our Contribution
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