

# Preconditioning for MCMC

Max Hird (UCL)

Joint work with Sam Livingstone (UCL)

### Outline

- Intro to Conditioning
- Intro to Markov Chain Monte Carlo (MCMC)
- Preconditioning in MCMC
  - Condition Number
  - Linear Preconditioning
  - Nonlinear Preconditioning
- Summary
- References

Introductory Material

Our Contribution

## Preconditioning

20th C Maths starts being concerned with computability and not simply conceivαbility:

$$\begin{vmatrix}
e_1 & 1 \cdot 4x + 0 \cdot 9y = 2 \cdot 7 \\
e_2 & -0 \cdot 8x + 1 \cdot 7y = -1 \cdot 2
\end{vmatrix}
\iff 0.01 \times e_1 + e_2 - 0 \cdot 786x + 1 \cdot 709y = -1 \cdot 173 \\
e_2 & -0 \cdot 800x + 1 \cdot 700y = -1 \cdot 200
\end{vmatrix}$$

well-conditioned

ill-conditioned

'It is certainly true that a trivial modification improves the conditioning'

Turing coins the condition number and defines it in multiple ways:

- N-condition number:  $\|A\|_F \|A^{-1}\|_F$  where  $\|A\|_F := \sqrt{\mathrm{Tr}(A^*A)}$
- M-condition number:  $M(A)M(A^{-1})$  where  $M(A):=\max_{ij}|m_{ij}|$

The condition number  $\geq 1$ , and 1 is the best possible value

Preconditioning: applying a transformation to reduce the condition number

Turing [1948]

### Markov Chain

#### Monte Carlo

Sample  $X_1,\ldots,X_n$  from a  $\pi$ -stationary Markov Chain, initial dist $\mu_0$ , form the estimator

$$\hat{f}_n := \frac{1}{n} \sum_{i=1}^n f(X_i)$$

Markov Chain CLT gives us that

$$\sqrt{n}\left(\hat{f}_n - E_{\pi}(f)\right) \stackrel{d}{\to} N\left(0,\sigma_f^2\right)$$

where

$$\sigma_f^2 := Var_{\pi}(f(X)) + 2\sum_{i=1}^{\infty} Cov (f(X_1), f(X_{1+k}))$$

Ideal MCMC is quick to equilibrate and has low autocorrelation in equilibrium

Want to estimate  $E_{\pi}(f(X))$ 

Sample iid  $X_1, \ldots, X_n \sim \pi$ , form the estimator:

$$\bar{f}_n := \frac{1}{n} \sum_{i=1}^n f(X_i)$$

Bias is 0, Variance is  $n^{-1}Var_{\pi}(f(X))$ 

Unnormalised  $\pi$  is no (theoretical) barrier

Sampling is impossible for interesting  $\pi$ 

## MCMC: algorithms

Generic structure of an MCMC algorithm: given an initial state  $X_0 \sim \mu_0$  and a proposal density  $q_{\theta}(x \to .)$  with parameters  $\theta \in \Theta$ 

- 1. Propose a new state  $Y_{i+1} \sim q_{\theta}(X_i \rightarrow .)$
- 2. Set  $X_{i+1} = Y_{i+1}$  with probability  $\alpha(X_i, Y_{i+1})$ , otherwise set  $X_{i+1} = X_i$

Step 2. is the *Metropolis-Hastings* accept/reject step - ensures  $\pi$ -stationarity Step 1. defines the algorithm:

- $q_{\theta}(x \to .) = p_{\theta}(.)$ : Independent Metropolis-Hastings
- $q_{\theta}(x \to ...) = N(x, \sigma^2 \mathbf{I}_d)$ : Random Walk Metropolis
- $q_{\theta}(x \to ...) = N\left(x + \sigma^2 \nabla_x \log \pi, 2\sigma^2 \mathbf{I}_d\right)$ : Metropolis Adjusted Langevin Algorithm
- $q_{\theta}(x \to .) =$  the distribution of the position of a particle after T seconds, with initial position x and initial momentum  $p \sim N(0, \mathbf{I}_d)$ , evolving according to Hamiltonian dynamics:

  HMC Metropolis et al. [1953]

### MCMC: quantities of interest

Recall: Ideal MCMC is quick to equilibrate and has low autocorrelation in equilibrium (low autocorrelation  $\Longrightarrow$  low asymptotic variance, modulo f)

Time to equilibrium of a particular algorithm is measured by the  $\epsilon$ -mixing time:

$$\tau(\epsilon, \mu_0) := \inf \left\{ n : d\left( \mathcal{L}(X_n | X_0 \sim \mu_0), \pi \right) \le \epsilon \right\}$$

Asymptotic variance and time to equilibrium strongly depend on the spectral gap: defining the operator P of the Markov chain, which acts on  $L^2(\pi)$ 

Pf(x) := E(f(Y)) where Y is the first state in the Markov chain, started at x.

P has an eigenvalue at 1 (Pconst.=const.) and spectrum(P)  $\subset$  [-1,1]

The spectral gap  $\rho$  is the distance between 1 and the nearest point in the spectrum  $\lambda_{\max}$  (bigger is better)

$$\sigma_f^2 = \frac{1 + \lambda_{\text{max}}}{\rho} Var_{\pi}(f)$$

### Condition number in MCMC

Target in the form  $\pi \propto \exp(-U(x))$  on  $\mathbb{R}^d$  such that  $m\mathbf{I}_d \leq \nabla_x^2 U(x) \leq M\mathbf{I}_d$  for all  $x \in \mathbb{R}^d$ :  $U: \mathbb{R}^d \to \mathbb{R}$  is m-strongly convex and M-smooth

*m*-strong convexity:

#### M-smoothness

Unimodal

m measures the curvature of U(x)

e.g. posterior with concave loglikelihood, Gaussian prior •  $\nabla_x U(x)$  is M-Lipschitz

Discretisations work nicely

: Convex quadratic upper and

: lower bound on U(x)

The condition number associated with sampling from  $\pi$  is

$$\kappa := \sup_{x \in \mathbb{R}^d} \|\nabla_x^2 U(x)\|_2 \sup_{x \in \mathbb{R}^d} \|\nabla_x^2 U(x)^{-1}\|_2$$

If  $m\mathbf{I}_d \leq \nabla_x^2 U(x) \leq M\mathbf{I}_d$  is tight  $\kappa = M/m$ 

As  $\kappa \to 1$ , the eigenvalues of  $\nabla^2_x U(x)$  get squeezed together, and  $\pi$  starts to look more like an isotropic Gaussian

### Importance of the condition number



Key: • - RWM • - MALA • - HMC

All bounds up to logarithmic factors, mixing times in TV

## Preconditioning in MCMC

Preconditioning involves a process  $\{X_i\}$  in  $\mathcal{X}$ , a process  $\{Y_i\}$  in  $\mathcal{Y}$ , and a transformation  $g:\mathcal{X}\to\mathcal{Y}$ 

We sample Y from a well-conditioned distribution and apply a Metropolis-Hastings accept/reject to  $X=g^{-1}(Y)$  such that  $\{X_i\}$  forms our samples to use in  $\hat{f}_n$ 

Encapsulates much of adaptive MCMC and therefore generative models: learning a complex distribution is seen as equivalent to learning parameters  $\theta$  of a map  $g_{\theta}^{-1}$  which we apply to samples from a simple distribution

Adaptive MCMC: access to  $\pi$  (unnormalised)  $^{\bullet}$ 

- Sampling via measure transport, Marzouk et al. [2016]
- HMC with Inverse Autoregressive Flows, Hoffman et al. [2019]

Generative Models: access to samples from  $\pi$ 

- GANs, Goodfellow et al. [2014]
- Normalizing flows, Papamakarios [2021]

## Linear Preconditioning

When Y = g(X) = LX for  $L \in GL_d(\mathbb{R})$  the condition number of the distribution of Y is

$$\kappa_{L} := \sup_{y \in \mathbf{R}^{d}} \|\nabla_{y}^{2} \tilde{U}(y)\|_{2} \sup_{y \in \mathbf{R}^{d}} \|\nabla_{y}^{2} \tilde{U}(y)^{-1}\|_{2} = \sup_{x \in \mathbf{R}^{d}} \|L^{-T} \nabla_{x}^{2} U(x) L^{-1}\|_{2} \sup_{x \in \mathbf{R}^{d}} \|L \nabla_{x}^{2} U(x)^{-1} L^{T}\|_{2}$$

Used in all major MCMC software packages (Stan, Tensorflow, Pyro etc.) even though theory is lacking.

Intuition: set L to be the square root of some representative of  $\nabla^2_x U(x)$  i.e.

Precision,  $\nabla_x^2 U(x^*)$  for  $x^*$  the mode, hope that  $\kappa_L \ll \kappa$ , doesn't always work:

Diagonal Preconditioning:  $L={\rm diag}(\Sigma_\pi)^{-\frac{1}{2}}$  Gaussian target:

$$\nabla_x^2 U(x) = \Sigma_\pi^{-1} \text{ so } \kappa_L = \| \text{diag}(\Sigma_\pi)^{\frac{1}{2}} \Sigma_\pi^{-1} \text{diag}(\Sigma_\pi)^{\frac{1}{2}} \|_2 \| \text{diag}(\Sigma_\pi)^{-\frac{1}{2}} \Sigma_\pi \text{diag}(\Sigma_\pi)^{-\frac{1}{2}} \|_2 = \| C_\pi^{-1} \|_2 \| C_\pi \|_2$$

There exist Gaussian targets for which  $L={
m diag}(\Sigma_\pi)^{-\frac{1}{2}}$  increases the condition number

$$\Sigma_{\pi} = \begin{pmatrix} 4.07, -3.90, 1.66 \\ -3.90, 3.73, -1.59 \\ 1.66, -1.59, 0.72 \end{pmatrix} \implies \kappa = 23,000, \kappa_{L} = 31,000$$

## Linear Preconditioning: Bounding $\kappa_L$

SVD on L:  $L = U\Sigma V^T$ ,  $\Sigma = \operatorname{diag}(\sigma_i: i \in [d])$ ,  $\{v_i: \|v_i\| = 1, i \in [d]\}$  the right singular vectors  $\{(\lambda_i(x), v_i(x)): \|v_i(x)\| = 1, i \in [d]\}$  the eigenvalue/vector pairs of  $\nabla_x^2 U(x)$ 

Condition 1 (C1): There exists an  $\epsilon > 0$  s.t. for all  $i \in [d]$  and  $x \in \mathbb{R}^d$ 

$$(1+\epsilon)^{-\frac{1}{2}} \le \frac{\lambda_i(x)}{\sigma_i^2} \le (1+\epsilon)^{\frac{1}{2}}$$

Condition 2 (C2): There exists a  $\delta > 0$  s.t. for all  $i, j \in [d]$  and  $x \in \mathbb{R}^d$ 

$$||v_i(x) - v_i|| \le \sqrt{2\delta}$$
 and  $||v_i(x) - v_j|| \ge \sqrt{2(1 - \delta)}$  for  $i \ne j$ 

Theorem 1: Assuming C1 and C2 we are able to make the following upper bound

$$\kappa_L \le (1+\epsilon) \left(1+\delta \sqrt{\sum_{i=1}^d \sigma_i^2 \sum_{i=1}^d \sigma_i^{-2}}\right)^4$$

There exist conditions C1', C2' which only involve  $\lambda_i(x)$ ,  $v_i(x)$  that imply C1 and C2

Bounds inform decisions at each stage of the process: pre-check, constructive, verification

## Nonlinear Preconditioning

Call  $\kappa_g$  the condition number after general transform  $g:\mathcal{X} o \mathcal{Y}$ 

Proposition: It is impossible to use linear preconditioning to achieve optimality ( $\kappa_{g}=1$ ) when  $\pi$  is not a Gaussian

Proof Sketch: The only distribution with  $\kappa=1$  is an isotropic Gaussian. Assume, seeking a contradiction, that we can linearly transform the state variable of a non-Gaussian to reach a Gaussian. Then we could simply take the inverse of the transform to reach a non-Gaussian from a Gaussian, which is impossible due to closure of Gaussians under linear transformations

Proposition: There exist targets with arbitrarily high condition number that gets worse under any linear preconditioning whatsoever (excluding  $L=\mathbf{I}_d$ )

Change of variables:  $\tilde{U}(g(x)) = U(x) + \log|\det J(g(x))|$  so we need  $\frac{1}{2}||g(x)||^2 = U(x) + \log|\det J(g(x))|$  which is a particular form of the *Monge-Ampère equation*.

## Nonlinear Preconditioning the Langevin Diffusion

$$dY_t = \frac{1}{2} \nabla_y \log \tilde{\pi}(Y_t) dt + dB_t$$

Defining  $f := g^{-1}$  such that X = f(Y), Itô's Lemma gives:

$$dX_t = \frac{1}{2} (J(f(Y_t)) \nabla_y \log \tilde{\pi}(Y_t) + L(f(Y_t)))dt + J(f(Y_t))dB_t$$

where  $L_i(f(Y_t)) = \Delta_v f_i(Y_t)$ . Changing variables, calculus:

$$dX_{t} = \frac{1}{2}G(X_{t})^{-1} \nabla_{X} \log \pi(X_{t}) dt + \Gamma(X_{t}) dt + G(X_{t})^{-\frac{1}{2}} dB_{t}$$

$$\Gamma_i(X_t) = \frac{1}{2} \sum_{j=1}^d \frac{\partial}{\partial x_j} \left( G(X_t)_{ij}^{-1} \right)$$

where  $G(X_t)^{-1} = J(f(Y_t))J(f(Y_t))^T = (J(g(X_t))^TJ(g(X_t))^{-1}$ . This is exactly the diffusion on a manifold with contravariant metric  $G(X_t)^{-1}$ .

Diffusion forms the basis of *Riemannian Manifold* MALA: parameter space as a manifold with *Expected Fisher Information* as metric

Betancourt [2013]: Use  $G(X_t)^{-1} = \nabla_x^2 U(X_t)^{-1}$ 

Xifara et al. [2014] Livingstone and Girolami [2014] Girolami and Calderhead [2011]

Rao [1945]

## Nonlinear Preconditioning the Hamiltonian

Recall 
$$p \sim N(0, \mathbf{I}_d)$$
 so  $\nu(p) \propto \left(-\frac{1}{2}p^Tp\right)$ . Make the transformation  $p \to \tilde{p} := f(p)$ .

$$\tilde{\nu}(\tilde{p}) \propto \nu(f^{-1}(\tilde{p})) |\det J(f^{-1}(\tilde{p}))|$$

$$= \exp\left(-\frac{1}{2}f^{-1}(\tilde{p})^T f^{-1}(\tilde{p})\right) |\det J(f(p))|^{-1}$$

$$= \exp\left(-\frac{1}{2}f^{-1}(\tilde{p})^{T}f^{-1}(\tilde{p}) - \log|\det J(f(p))|\right)$$

In particular  $f(p) = \sqrt{G(x)}p$  has a Jacobian  $J(f(p)) = \sqrt{G(x)}$  so

$$\tilde{\nu}(\tilde{p}) = \exp\left(-\frac{1}{2}\tilde{p}^T G(x)^{-1}\tilde{p} - \frac{1}{2}\log|\det G(x)|\right)$$

The joint distntargeted by HMC is

$$\pi(x,\tilde{p}) \propto \pi(x)\tilde{\nu}(\tilde{p} \mid x) = \exp\left(-U(x) - \frac{1}{2}\tilde{p}^T G(x)^{-1}\tilde{p} - \frac{1}{2}\log|\det G(x)|\right)$$

which has Hamiltonian

$$H(x, \tilde{p}) = U(x) + \frac{1}{2}\tilde{p}^T G(x)^{-1}\tilde{p} + \frac{1}{2}\log|\det G(x)|$$

## Unification via Nonlinear Preconditioning

Recent algorithms inspired by 'mirror descent' technique use heuristic in the last slide: simulate process using the Langevin diffusion, and transport to samples using a 'mirror map':

Zhang et al. [2020]:

Well-conditioned 
$$dY_t = \frac{1}{2} \nabla_x \log \pi(X_t) dt + \nabla_x^2 h(X_t)^{\frac{1}{2}} dB_t$$
  $f$  map:  $X_t = \nabla_y h^*(Y_t)$  (no MH accept/reject) process:

 $h: \mathbb{R}^d \to \mathbb{R}$  is convex,  $h^*$  its convex conjugate,  $\nabla_y h^* = (\nabla_x h)^{-1}$ 

Dynamics can be shown to be equivalent to Langevin on a Hessian Manifold i.e. a manifold with Hessian metric:  $G(X_t)^{-1} = \nabla_x^2 h(X_t)^{-1}$ 

Chewi et al. [2020] propose using h=U, matching the metric proposed in Betancourt [2013]:  $G(X_t)^{-1} = \nabla_x^2 U(X_t)^{-1}$ 

Therefore use a transformation such that  $J(g(X)) = \nabla_x^2 U(X)^{\frac{1}{2}}$  (since recall:

$$G(X_t)^{-1} = J(f(Y_t))J(f(Y_t))^T = (J(g(X_t))^T J(g(X_t))^{-1})$$

Nemirovskii and Yudin [1979] Hsieh and Cevher [2018] Chewi et al. [2020]

### Hessian Based Transformation

g s.t.  $J(g(X)) = \nabla_x^2 U(X)^{\frac{1}{2}}$  makes sense:

$$\nabla_y^2 \tilde{U}(y) = J(g)^{-T} \nabla_x^2 U(x) J(g)^{-1} + J(g)^{-T} \nabla_x^2 \log|\det J(g)| J(g)^{-1} + R$$

$$= \mathbf{I}_d + \nabla_x^2 U(x)^{-\frac{1}{2}} \nabla_x^2 \log|\det J(g)| \nabla_x^2 U(x)^{-\frac{1}{2}} + R$$

R is a remainder involving derivatives of  $\nabla_x^2 U(x)^{\frac{1}{2}}$  and U(x).

Go from conditions on  $\nabla_x^2 U(x)$  being global in the case of linear preconditioning to local Make the guess:  $g(X) = \nabla_x^2 U(X)^{\frac{1}{2}} X - c(X)$ . Jacobian is  $J(g) = \nabla_x^2 U(X)^{\frac{1}{2}} + \partial \left( \nabla_x^2 U(X)^{\frac{1}{2}}, X \right) - J(c)$  where

$$\partial \left( \nabla_x^2 U(X)^{\frac{1}{2}}, X \right) \in \mathbb{R}^{d \times d} \text{ has } j \text{th column} \left( \frac{\partial}{\partial x_j} \nabla_x^2 U(X)^{\frac{1}{2}} \right) X$$

In 1 dimension:

$$c(X) = \sum_{k=2}^{\infty} \frac{(-1)^k x^k}{k!} \frac{\partial^{k-1}}{\partial x^{k-1}} \left( \sqrt{\frac{\partial^2}{\partial x^2}} U(x) \right)$$

$$= x\sqrt{\frac{\partial^2}{\partial x^2}}U(x) - \int_0^x \sqrt{\frac{\partial^2}{\partial t^2}}U(t)dt$$

In d dimensions: need to solve  $\partial \left( \nabla_x^2 U(X)^{\frac{1}{2}}, X \right) = J(c)$ 

Compromise: let  $g(X) = \nabla_x^2 U(X)^{\frac{1}{2}} X$ 

## Summary

Intro to Preconditioning

Introductory Material

- Condition Number
- Intro to Markov Chain Monte Carlo (MCMC)
  - Defined quantities of interest: spectral gap,  $\epsilon$ -mixing time
  - · Recently introduced bounds on the quantities, polynomial in dimension and condition
- Preconditioning in MCMC
  - Condition Number
  - Linear Preconditioning

Our Contribution

- Global conditions on the Hessian of the potential characterise the effectiveness
- Bound can be used: as a pre-check, constructively, or for verification
- Nonlinear Preconditioning
  - Derive Riemannian manifold techniques as an instance of nonlinear preconditioning
  - Identify Mirror Langevin techniques as the same
  - Use these classes to identify nonlinear transformations



### References I

- Turing, A. M., (1948). ROUNDING-OFF ERRORS IN MATRIX PROCESSES. The Quarterly Journal of Mechanics and Applied Mathematics, 1(1), 287-308. <a href="https://doi.org/10.1093/qjmam/1.1.287">https://doi.org/10.1093/qjmam/1.1.287</a>
- Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., & Teller, E. (1953). Equation of state calculations by fast computing machines. Journal of Chemical Physics, 21, 1087-1092.
- Hastings, W. K. (1970). Monte Carlo Sampling Methods Using Markov Chains and Their Applications. Biometrika, 57(1), 97–109. <a href="https://doi.org/10.2307/2334940">https://doi.org/10.2307/2334940</a>
- Lee, Y. T., & Shen, R., & Tian, K. (2021). Lower Bounds on Metropolized Sampling Methods for Well-Conditioned Distributions. ArXiv, abs/2106.05480.
- Chen, Y., & Dwivedi, R., & Wainwright, M. J., & Yu, B. (2019). Fast mixing of Metropolized Hamiltonian Monte Carlo: Benefits of multi-step gradients. ArXiv, abs/1905.12247.
- Dwivedi, R., & Chen, Y., & Wainwright, M. J., & Yu, B. (2019). Log-concave sampling: Metropolis-Hastings algorithms are fast. Journal of Machine Learning Research. 20(183). 1-42
- Andrieu, C., & Lee, A., & Power, S., & Wang, A. Q. (2022). Explicit convergence bounds for Metropolis Markov chains: isoperimetry, spectral gaps and profiles. ArXiv, abs/2211.08959

### References II

- Marzouk, Y., & Moselhy, T., & Parno, M., & Spantini, A. (2016). Sampling via Measure Transport: An Introduction. 10.1007/978-3-319-11259-6\_23-1.
- Hoffman, M., & Sountsov, P., & Dillon, J. V., & Langmore, I., & Tran, D., Vasudevan, S. (2019). NeuTra-lizing Bad Geometry in Hamiltonian Monte Carlo Using Neural Transport. ArXiv, abs/1903.03704
- Goodfellow, I., & Pouget-Abadie, J., & Mirza, M., & Xu, B., & Warde-Farley, D., & Ozair, S., & Courville, A. & Bengio, Y.. (2014). Generative Adversarial Networks. Advances in Neural Information Processing Systems. 3. 10.1145/3422622.
- Papamakarios, G., Nalisnick, E., Rezende, D. J., Mohamed, S., and Lakshminarayanan. B. (2022). Normalizing flows for probabilistic modeling and inference. J. Mach. Learn. Res. 22, 1, Article 57
- Livingstone, S., & Girolami, M. (2014). Information-Geometric Markov Chain Monte Carlo Methods Using Diffusions. Entropy. 16. 10.3390/e16063074.
- Xifara, T., Sherlock, C., Livingstone, S., Byrne, S., & Girolami, M.A. (2014). Langevin diffusions and the Metropolis-adjusted Langevin algorithm. Statistics & Probability Letters, 91, 14-19.

### References III

- Girolami, M. and Calderhead, B. (2011), Riemann manifold Langevin and Hamiltonian Monte Carlo methods. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 73: 123-214. <a href="https://doi.org/10.1111/j.1467-9868.2010.00765.x">https://doi.org/10.1111/j.1467-9868.2010.00765.x</a>
- Rao, C.R. (1945) Information and the Accuracy Attainable in the Estimation of Statistical Parameters. Bulletin of Calcutta Mathematical Society, 37, 81-91.
- Betancourt, M. (2012). A General Metric for Riemannian Manifold Hamiltonian Monte Carlo. International Conference on Geometric Science of Information.
- Hsieh, Y., & Cevher, V. (2018). Mirrored Langevin Dynamics. ArXiv, abs/1802.10174.
- Nemirovskii, A. S. & Yudin, D. B. (1979). Complexity of Problems and Efficiency of Optimization Methods.
- Chewi, S., Le Gouic, T., Lu, C., Maunu, T., Rigollet, P. and Stromme, A. (2020). Exponential ergodicity of mirror-Langevin diffusions. In Proceedings of the 34th International Conference on Neural Information Processing Systems (NIPS'20). Curran Associates Inc., Red Hook, NY, USA, Article 1642, 19573–19585.
- Zhang, K. S., Peyré G., Fadili, J. M., Pereyra, M. (2020). Wasserstein Control of Mirror Langevin Monte Carlo. Proceedings of Machine Learning Research, Conference on Learning Theory (COLT). pp. 1-28